- Home
- People
- Chief Investigators
- Matt Wand
Professor Matt Wand
Professor Matt Wand is a Distinguished Professor of Statistics at University of Technology Sydney.
He has held faculty appointments at Harvard University, Rice University, Texas A&M University, University of New South Wales and University of Wollongong. In 2008 Professor Wand became an elected Fellow of the Australian Academy of Science. He also has been awarded two Australian Academy of Science honorific awards for statistical research: the Moran Medal in 1997 for outstanding research by scientists under the age of 40 and the Hannan Medal in 2013 for career research in statistical science. In 2013 he was awarded the University of Technology Sydney, Chancellor's Medal for Exceptional Research. He received the 2013 Pitman Medal from the Statistical Society of Australia in recognition of outstanding achievement in, and contribution to, the discipline of Statistics. Professor Wand is an elected fellow of the American Statistical Association, the Institute of Mathematical Statistics and the Australian Mathematical Society.
Professor Wand has co-authored two books and more than 115 papers in statistics journals. He has six packages in the R language on the Comprehensive R Archive Network.
In 2002 Professor Wand was ranked 23 among highly cited authors in mathematics and statistics for the period 1991–2001. He is also a member of the ‘ISI Highly Cited Researchers’ list. Since 2000 Professor Wand has been principal investigator on seven major grants.
For more information visit his personal website http://matt-wand.utsacademics.info.
Professor Wand is chiefly interested in the development of statistical methodology for finding useful structure in large multivariate data sets. Currently, Matt’s specific interests include: fast approximate statistical inference, message passing algorithms, statistical methods for streaming data, generalised linear mixed models and semiparametric. He is also very interested in Statistical Computing and contributes to the field's main software repository — the ‘Comprehensive R Archive Network’.